Protein-protein interactions in the yeast pheromone response pathway: Ste5p interacts with all members of the MAP kinase cascade.
نویسندگان
چکیده
We have used the two-hybrid system of Fields and Song to identify protein-protein interactions that occur in the pheromone response pathway of the yeast Saccharomyces cerevisiae. Pathway components Ste4p, Ste5p, Ste7p, Ste11p, Ste12p, Ste20p, Fus3p and Kss1p were tested in all pairwise combinations. All of the interactions we detected involved at least one member of the MAP kinase cascade that is a central element of the response pathway. Ste5p, a protein of unknown biochemical function, interacted with protein kinases that operate at each step of the MAP kinase cascade, specifically with Ste11p (an MEKK), Ste7p (an MEK), and Fus3p (a MAP kinase). This finding suggests that one role of Ste5p is to serve as a scaffold to facilitate interactions among members of the kinase cascade. In this role as facilitator, Ste5p may make both signal propagation and signal attenuation more efficient. Ste5p may also help minimize cross-talk with other MAP kinase cascades and thus ensure the integrity of the pheromone response pathway. We also found that both Ste11p and Ste7p interact with Fus3p and Kss1p. Finally, we detected an interaction between one of the MAP kinases, Kss1p, and a presumptive target, the transcription factor Ste12p. We failed to detect interactions of Ste4p or Ste20p with any other component of the response pathway.
منابع مشابه
Evolutionary Reshaping of Fungal Mating Pathway Scaffold Proteins
Scaffold proteins play central roles in the function of many signaling pathways. Among the best-studied examples are the Ste5 and Far1 proteins of the yeast Saccharomyces cerevisiae. These proteins contain three conserved modules, the RING and PH domains, characteristic of some ubiquitin-ligating enzymes, and a vWA domain implicated in protein-protein interactions. In yeast, Ste5p regulates the...
متن کاملStudy of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks
Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...
متن کاملA yeast mitogen-activated protein kinase homolog (Mpk1p) mediates signalling by protein kinase C.
Mitogen-activated protein (MAP) kinases are activated in response to a variety of stimuli through a protein kinase cascade that results in their phosphorylation on tyrosine and threonine residues. The molecular nature of this cascade is just beginning to emerge. Here we report the isolation of a Saccharomyces cerevisiae gene encoding a functional analog of mammalian MAP kinases, designated MPK1...
متن کاملHow can yeast cells decide between three activated MAP kinase pathways? A model approach.
In yeast (Saccharomyces cerevisiae), the regulation of three MAP kinase pathways responding to pheromones (Fus3 pathway), carbon/nitrogen starvation (Kss1 pathway), and high osmolarity/osmotic stress (Hog1 pathway) is the subject of intensive research. We were interested in the question how yeast cells would respond when more than one of the MAP kinase pathways are activated simultaneously. Her...
متن کاملMAP kinase signaling induces nuclear reorganization in budding yeast
BACKGROUND During the mating pheromone response in budding yeast, activation of a mitogen-activated protein kinase (MAP kinase) cascade results in well-characterized changes in cytoskeletal organization and gene expression. Spatial reorganization of genes within the nucleus has been documented during cell-type differentiation in mammalian cells, but no information was previously available on th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 138 3 شماره
صفحات -
تاریخ انتشار 1994